题目来源“数据结构与算法面试题80道”。在此给出我的解法,如你有更好的解法,欢迎留言。
问题分析:假设 f(n) f ( n ) 为跳台阶的总跳法,当 n=1 n = 1 时, f(n)=1 f ( n ) = 1 ;当 n=2 n = 2 时, f(n)=2 f ( n ) = 2 ;当 n=3 n = 3 时,如果先跳1级台阶,有 f(n−1)=f(2) f ( n − 1 ) = f ( 2 ) 种方法,如果先跳2级台阶,有 f(n−2)=f(1) f ( n − 2 ) = f ( 1 ) 种方法,依次类推,可以得到下面的递推公式:
方法:
int get_kind(int n){
if (n <= 0) return 0;
int result;
int *cal = (int *)malloc(sizeof(int) * n);
for (int i = 0; i < n; i++){
if ((i + 1) == 1) cal[i] = 1;
else if ((i + 1) == 2) cal[i] = 2;
else {
cal[i] = cal[i-1] + cal[i-2];
}
}
result = cal[n-1];
free(cal);
return result;
}
时间复杂度为O(n)。