自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

null的专栏

Keep your eyes open and your feet moving forward. You'll find what you need.

  • 博客(7)
  • 资源 (4)
  • 论坛 (1)
  • 收藏
  • 关注

原创 优化算法——拟牛顿法之BFGS算法

一、BFGS算法简介    BFGS算法是使用较多的一种拟牛顿方法,是由Broyden,Fletcher,Goldfarb,Shanno四个人分别提出的,故称为BFGS校正。    同DFP校正的推导公式一样,DFP校正见博文“优化算法——拟牛顿法之DFP算法”。对于拟牛顿方程:可以化简为:令,则可得:在B

2015-05-20 11:31:14 30521 7

原创 优化算法——拟牛顿法之DFP算法

一、牛顿法    在博文“优化算法——牛顿法(Newton Method)”中介绍了牛顿法的思路,牛顿法具有二阶收敛性,相比较最速下降法,收敛的速度更快。在牛顿法中使用到了函数的二阶导数的信息,对于函数,其中表示向量。在牛顿法的求解过程中,首先是将函数在处展开,展开式为:其中,,表示的是目标函数在的梯度,是一个向量。,表示的是目标函数在处的Hesse矩阵。省略掉

2015-05-19 22:11:04 18668 10

原创 简单易学的机器学习算法——谱聚类(Spectal Clustering)

一、复杂网络中的一些基本概念1、复杂网络的表示    在复杂网络的表示中,复杂网络可以建模成一个图,其中,表示网络中的节点的集合,表示的是连接的集合。在复杂网络中,复杂网络可以是无向图、有向图、加权图或者超图。2、网络簇结构    网络簇结构(network cluster structure)也称为网络社团结构(network community structure),是复杂

2015-05-15 12:45:02 23679 11

原创 python读取文件——python读取和保存mat文件

首先我们谈谈MarkDown编辑器,我感觉些倒是挺方便的,因为用惯了LaTeX,对于MarkDown还是比较容易上手的,但是我发现,MarkDown中有这样几个问题一直没能找到具体的解决方法:图片大小的问题。在LaTeX中我们可以调整图片的大小,以适应整个文本;字体,字号大小的设置。在MarkDown里面标题倒是挺大的,但是正文却显得太小,不是很喜欢里面的字体。主要发现上面两个

2015-05-12 17:53:27 116593 4

原创 优化算法——遗传算法

与遗传算法的第一次接触遗传算法的基本概念基本定义遗传算法的基本流程遗传算法过程中的具体操作参数的编码二进制编码Gray编码实数编码有序编码初始群体的设定适应度函数的计算遗传操作设计选择selection交叉crossover变异mutation控制参数的设定求解优化问题的实例问题描述问题分析算法设计个体编码适应值函数选择策略杂交算子变异算子参数设置

2015-05-10 17:09:28 29718 5

原创 python基础知识——字符串

1、字符串的格式化python将若干值插入到带有“%”标记的字符串中,实现动态地输出字符串。格式:"%s" % str"%s%s" % (str_1, str_2)例如:str_0 = "I"str_1 = "Love"str_2 = "China"format = "%s%s%s" % (str_0, str_1, str_2)print format#ILove

2015-05-06 22:04:19 2685

原创 简单易学的机器学习算法——因子分解机(Factorization Machine)

一、因子分解机FM的模型       因子分解机(Factorization Machine, FM)是由Steffen Rendle提出的一种基于矩阵分解的机器学习算法。1、因子分解机FM的优势       对于因子分解机FM来说,最大的特点是对于稀疏的数据具有很好的学习能力。现实中稀疏的数据很多,例如作者所举的推荐系统的例子便是一个很直观的具有稀疏特点的例子。2、因子分解机FM的模型     

2015-05-06 13:27:07 53715 29

在线顺序极限学习机OS-ELM的python实现

与博文(http://blog.csdn.net/google19890102/article/details/45273309)配套的实验

2015-04-25

线性回归实验数据

与我的博客内容同步http://blog.csdn.net/google19890102

2014-05-22

logistic回归测试数据

与我的博客配套,具体参照我的博客文章简单易学的机器学习算法——Logistic回归

2014-05-12

达内java学习笔记-总最全

java学学习必备 面向对象主要针对面向过程。 面向过程的基本单元是函数。 什么是对象:EVERYTHING IS OBJECT(万物皆对象) 所有的事物都有两个方面: 有什么(属性):用来描述对象。 能够做什么(方法):告诉外界对象有那些功能。 后者以前者为基础。 大的对象的属性也可以是一个对象。 为什么要使用面向对象: 首先,面向对象符合人类看待事物的一般规律。 对象的方法的实现细节是屏蔽的,只有对象方法的实现者了解细节。 方法的定义非常重要。方法有参数,也可能有返回值。 注意区分:对象(本身)、对象的实现者、对象的调用者。 分析对象主要从方法开始。 我们通过类来看待对象,类是对象的抽象。 其次,采用面向对象方法可以使系统各部分各司其职、各尽所能。

2011-01-24

zhiyong_will的留言板

发表于 2020-01-02 最后回复 2020-04-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除