自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

null的专栏

Keep your eyes open and your feet moving forward. You'll find what you need.

  • 博客(6)
  • 资源 (4)
  • 论坛 (1)
  • 收藏
  • 关注

原创 可扩展机器学习——分类——点击率预测(Click-through Rate Prediction)

注:这是一份学习笔记,记录的是参考文献中的可扩展机器学习的一些内容,英文的PPT可见参考文献的链接。这个只是自己的学习笔记,对原来教程中的内容进行了梳理,有些图也是引用的原来的教程,若内容上有任何错误,希望与我联系,若内容有侵权,同样也希望告知,我会尽快删除。这部分本应该加上实验的部分,实验的部分在后期有时间再补上。可扩展机器学习系列主要包括以下几个部分:概述 - Spark分布式处理 - 线性

2015-12-14 19:11:06 8843 3

原创 可扩展机器学习——梯度下降(Gradient Descent)

注:这是一份学习笔记,记录的是参考文献中的可扩展机器学习的一些内容,英文的PPT可见参考文献的链接。这个只是自己的学习笔记,对原来教程中的内容进行了梳理,有些图也是引用的原来的教程,若内容上有任何错误,希望与我联系,若内容有侵权,同样也希望告知,我会尽快删除。这部分本应该加上实验的部分,实验的部分在后期有时间再补上。可扩展机器学习系列主要包括以下几个部分:概述 - Spark分布式处理 - 线性

2015-12-12 17:58:03 5499

原创 可扩展机器学习——线性回归(linear Regression)

注:这是一份学习笔记,记录的是参考文献中的可扩展机器学习的一些内容,英文的PPT可见参考文献的链接。这个只是自己的学习笔记,对原来教程中的内容进行了梳理,有些图也是引用的原来的教程,若内容上有任何错误,希望与我联系,若内容有侵权,同样也希望告知,我会尽快删除。这部分本应该加上实验的部分,实验的部分在后期有时间再补上。可扩展机器学习系列主要包括以下几个部分:概述 - Spark分布式处理 - 线性

2015-12-12 17:48:44 4806

原创 简单易学的机器学习算法——Label Propagation

一、社区划分的概述对于社区,没有一个明确的定义,有很多对社区的定义,如社区是指在一个网络中,有一组节点,它们彼此都相似,而组内的节点与网络中的其他节点则不相似。更为一般的可以表述为:社区是指网络中节点的集合,这些节点内部连接较为紧密而外部连接较为稀疏。基于上述的形象的表示,出现了很多的社区划分算法,如前面介绍的Fast Unfolding算法,Fast Unfolding算法是基于模块度的...

2015-12-05 16:11:02 14316 14

原创 可扩展机器学习——Spark分布式处理

注:这是一份学习笔记,记录的是参考文献中的可扩展机器学习的一些内容,英文的PPT可见参考文献的链接。这个只是自己的学习笔记,对原来教程中的内容进行了梳理,有些图也是引用的原来的教程,若内容上有任何错误,希望与我联系,若内容有侵权,同样也希望告知,我会尽快删除。可扩展机器学习系列主要包括以下几个部分:概述Spark分布式处理线性回归(linear Regression)梯度下降(Gradien

2015-12-01 13:12:59 3797 1

原创 可扩展机器学习——概述

注:这是一份学习笔记,记录的是参考文献中的可扩展机器学习的一些内容,英文的PPT可见参考文献的链接。这个只是自己的学习笔记,对原来教程中的内容进行了梳理,有些图也是引用的原来的教程,若内容上有任何错误,希望与我联系,若内容有侵权,同样也希望告知,我会尽快删除。可扩展机器学习系列主要包括以下几个部分:概述Spark分布式处理线性回归(linear Regression)梯度下降(Gradien

2015-12-01 12:15:21 2667

在线顺序极限学习机OS-ELM的python实现

与博文(http://blog.csdn.net/google19890102/article/details/45273309)配套的实验

2015-04-25

线性回归实验数据

与我的博客内容同步http://blog.csdn.net/google19890102

2014-05-22

logistic回归测试数据

与我的博客配套,具体参照我的博客文章简单易学的机器学习算法——Logistic回归

2014-05-12

达内java学习笔记-总最全

java学学习必备 面向对象主要针对面向过程。 面向过程的基本单元是函数。 什么是对象:EVERYTHING IS OBJECT(万物皆对象) 所有的事物都有两个方面: 有什么(属性):用来描述对象。 能够做什么(方法):告诉外界对象有那些功能。 后者以前者为基础。 大的对象的属性也可以是一个对象。 为什么要使用面向对象: 首先,面向对象符合人类看待事物的一般规律。 对象的方法的实现细节是屏蔽的,只有对象方法的实现者了解细节。 方法的定义非常重要。方法有参数,也可能有返回值。 注意区分:对象(本身)、对象的实现者、对象的调用者。 分析对象主要从方法开始。 我们通过类来看待对象,类是对象的抽象。 其次,采用面向对象方法可以使系统各部分各司其职、各尽所能。

2011-01-24

zhiyong_will的留言板

发表于 2020-01-02 最后回复 2020-04-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除