- 博客(9)
- 资源 (4)
- 论坛 (1)
- 收藏
- 关注
原创 推荐算法——非负矩阵分解(NMF)
一、矩阵分解回顾在博文推荐算法——基于矩阵分解的推荐算法中,提到了将用户-商品矩阵进行分解,从而实现对未打分项进行打分。矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积。对于上述的用户-商品矩阵(评分矩阵),记为Vm×nV_{m\times n},可以将其分解成两个或者多个矩阵的乘积,假设分解成两个矩阵Wm×kW_{m\times k}和Hk×nH_{k\times n},我们要使得矩阵Wm×kW
2016-04-19 19:21:30
25589
6
原创 计算广告——搜索广告技术初窥
这是对一个PPT的内容的整理,PPT的主要内容是刘铁岩的《Online Advertising》。主要介绍了一些付费搜索相关的一些技术。这篇文章主要是对这方面的知识做一个整理。在搜索广告中,有很多的知识点是值得借鉴的。一、广告1.1、定义:Advertising is a form of communication intended to persuade an audience
2016-04-14 21:50:34
6128
原创 机器学习中的常见问题——K-Means算法与矩阵分解的等价
一、K-Means算法的基本原理K-Means算法是较为经典的聚类算法,假设训练数据集XXX为:{x1,x2,⋯,xn}{x1,x2,⋯,xn}\left \{ \mathbf{x}_1,\mathbf{x}_2,\cdots , \mathbf{x}_n \right \},其中,每一个样本xjxj \mathbf{x}_j为mmm维的向量。此时的样本为一个m×nm×nm\times n的矩...
2016-04-13 16:41:05
5871
原创 推荐算法——基于矩阵分解的推荐算法
一、推荐算法概述对于推荐系统(Recommend System, RS),从广义上的理解为:为用户(User)推荐相关的商品(Items)。常用的推荐算法主要有:基于内容的推荐(Content-Based Recommendation)协同过滤的推荐(Collaborative Filtering Recommendation)基于关联规则的推荐(Association Rule-Based
2016-04-12 17:07:51
43437
44
原创 图解机器学习总结——1、基本概念
序言:近期主要帮同事讲解《图解机器学习》,刚拿到这本书觉得内容相比较平常使用的机器学习算法,很多地方讲解得比较奇怪,所以很认真的读了一下,读了书就想把知识点整理出来,加上一些自己对各种算法的认识,因此这个系列里面有一些个人的理解,若有不对的地方,还请不吝指出,谢谢。本系列主要包括:1、基本概念(对应书上第一章和第二章)2、最小二乘学习法3、带有约束条件的最小二乘法4、稀疏学习5、
2016-04-09 21:51:28
5672
原创 优化算法——坐标上升法
一、坐标上升法算法原理坐标上升法(Coordinate Ascent)每次通过更新函数中的一维,通过多次的迭代以达到优化函数的目的。假设需要求解的优化问题的具体形式如下:maxαW(α1,α2,⋯,αm)\underset{\alpha }{max}W\left ( \alpha _1,\alpha _2,\cdots ,\alpha _m \right )其中,WW是向量α⃗ \vec{\alph
2016-04-06 15:00:04
12890
原创 Shell编程——Shell中的数学运算
在Linux Shell中进行数学运算,通常可以使用的运算符有:简单运算: let[](())高级运算: exprbc1、let命令let命令是bash内置命令,可以实现简单的算术以及逻辑运算,通过help let命令,可以查询到let命令的具体使用方法。使用方法:#!/bin/shi=10echo $ilet i=i+10 #20echo $ilet "i=i+100" #12
2016-04-05 17:24:22
11555
在线顺序极限学习机OS-ELM的python实现
2015-04-25
达内java学习笔记-总最全
2011-01-24
zhiyong_will的留言板
发表于 2020-01-02 最后回复 2020-04-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝