自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

null的专栏

Keep your eyes open and your feet moving forward. You'll find what you need.

  • 博客(3)
  • 资源 (4)
  • 论坛 (1)
  • 收藏
  • 关注

原创 机器学习算法实现解析——libFM之libFM的训练过程之Adaptive Regularization

本节主要介绍的是libFM源码分析的第五部分之二——libFM的训练过程之Adaptive Regularization的方法。5.3、Adaptive Regularization的训练方法5.3.1、SGD的优劣在“机器学习算法实现解析——libFM之libFM的训练过程之SGD的方法”中已经介绍了基于SGD的FM模型的训练方法,SGD的方法的最大优点是其训练过程很简单,只需在计算的过程中求解损

2017-06-16 20:00:21 3186 1

原创 机器学习算法实现解析——libFM之libFM的训练过程之SGD的方法

本节主要介绍的是libFM源码分析的第五部分之一——libFM的训练过程之SGD的方法。5.1、基于梯度的模型训练方法在libFM中,提供了两大类的模型训练方法,一类是基于梯度的训练方法,另一类是基于MCMC的模型训练方法。对于基于梯度的训练方法,其类为fm_learn_sgd类,其父类为fm_learn类,主要关系为: fm_learn_sgd类是所有基于梯度的训练方法的父类,其具体的代码如

2017-06-15 18:56:28 5991 3

原创 机器学习算法实现解析——libFM之libFM的模型处理部分

本节主要介绍的是libFM源码分析的第三部分——libFM的模型处理。3.1、libFM中FM模型的定义libFM模型的定义过程中主要包括模型中参数的设置及其初始化,利用模型对样本进行预测。在libFM中,首先定义FM模型,在fm_model类中实现对FM模型的定义,fm_model类在“\libfm-1.42.src\src\fm_core\fm_model.h”中。在定义fm_model类之前,

2017-06-13 19:27:15 5490 3

在线顺序极限学习机OS-ELM的python实现

与博文(http://blog.csdn.net/google19890102/article/details/45273309)配套的实验

2015-04-25

线性回归实验数据

与我的博客内容同步http://blog.csdn.net/google19890102

2014-05-22

logistic回归测试数据

与我的博客配套,具体参照我的博客文章简单易学的机器学习算法——Logistic回归

2014-05-12

达内java学习笔记-总最全

java学学习必备 面向对象主要针对面向过程。 面向过程的基本单元是函数。 什么是对象:EVERYTHING IS OBJECT(万物皆对象) 所有的事物都有两个方面: 有什么(属性):用来描述对象。 能够做什么(方法):告诉外界对象有那些功能。 后者以前者为基础。 大的对象的属性也可以是一个对象。 为什么要使用面向对象: 首先,面向对象符合人类看待事物的一般规律。 对象的方法的实现细节是屏蔽的,只有对象方法的实现者了解细节。 方法的定义非常重要。方法有参数,也可能有返回值。 注意区分:对象(本身)、对象的实现者、对象的调用者。 分析对象主要从方法开始。 我们通过类来看待对象,类是对象的抽象。 其次,采用面向对象方法可以使系统各部分各司其职、各尽所能。

2011-01-24

zhiyong_will的留言板

发表于 2020-01-02 最后回复 2020-04-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除